Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra. | \(-h_{5}-2h_{4}+3h_{3}+2h_{2}+h_{1}\) | \(g_{8}+2/3g_{5}+g_{2}+2/3g_{1}\) | \(g_{9}\) | \(g_{12}+3/2g_{11}+g_{6}\) | \(g_{10}\) | \(g_{14}+g_{13}\) | \(g_{15}\) |
weight | \(0\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(8\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(4\omega_{1}-12\psi\) | \(4\omega_{1}\) | \(4\omega_{1}+12\psi\) | \(6\omega_{1}\) | \(8\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{4\omega_{1}-12\psi} \) → (4, -12) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | \(\displaystyle V_{4\omega_{1}+12\psi} \) → (4, 12) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0) | ||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | ||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}-12\psi\) \(2\omega_{1}-12\psi\) \(-12\psi\) \(-2\omega_{1}-12\psi\) \(-4\omega_{1}-12\psi\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+12\psi\) \(2\omega_{1}+12\psi\) \(12\psi\) \(-2\omega_{1}+12\psi\) \(-4\omega_{1}+12\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-12\psi}\oplus M_{2\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-2\omega_{1}-12\psi}\oplus M_{-4\omega_{1}-12\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+12\psi}\oplus M_{2\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-2\omega_{1}+12\psi}\oplus M_{-4\omega_{1}+12\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-12\psi}\oplus M_{2\omega_{1}-12\psi}\oplus M_{-12\psi}\oplus M_{-2\omega_{1}-12\psi}\oplus M_{-4\omega_{1}-12\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+12\psi}\oplus M_{2\omega_{1}+12\psi}\oplus M_{12\psi}\oplus M_{-2\omega_{1}+12\psi}\oplus M_{-4\omega_{1}+12\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) |
2\\ |